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not-for-profit	 cutting-edge	 analog	 computer.	 It	 computes	
with continuous voltages rather than with zeroes and ones. 
Capable	of	solving	(sets	of)	differential	equations,	it	enables	
the modeling of a broad range of dynamic systems. This 
booklet	offers	guidance	to	users	taking	first	steps	with	THAT,	
focusing on the qualitative rather than quantitative aspects 
of	analog	computing.	We	hope	you	find	this	booklet,	along	
with THAT, its online resources, and its community of users 
enjoyable resources in your learning inquiries and in our 
shared quest to make computing more diverse!

[1] Jennifer Hasler (2016). Opportunities in physical 
computing driven by analog realization, 2016 IEEE Int’l 
Conference on Rebooting Computing, San Diego, CA.

[2] John L. Hennessy and David A. Patterson (2019). 
Computer Architecture. A Quantitative Approach, 6th 
edition, Morgan Kaufmann, Cambridge, MA, p. 3.

[3] Daniel E. Geer Jr. (2018). A Rubicon, Hoover Working 
Group on National Security, Technology, and Law, 
Aegis Paper Series No. 1801.

[4] George F. Lang (2000). Analog was not a computer 
trademark! Sound and Vibration, August 2000, 16–24.

Computing today is a digital monoculture. At anabrid, we 
want to see a comeback of analog computing and, eventually, 
an analog-digital hybrid computing future, because:

 ● Analog	 computing	 is	 vastly	more	 energy-efficient	 than	
digital computing [1], promising to lower our computa-
tional	CO2	footprint	and	energy	costs	significantly.

 ● As the exponential growth of digital computing power 
described by Moore’s Law approaches its limits [2], 
analog-digital hybrid technology promises to sustain 
growth in computer performance for decades to come.

 ● Analog computing may protect critical infrastructure by 
reducing attack surfaces of online operational technology 
and	by	offering	failover	options.	[3]

 ● Analog computing is a fascinating intellectual and artistic 
activity.	As	a	computing	paradigm	it	is	radically	different	
from	Turing	machine-type	thinking,	offering	an	excellent	
way to learn about mathematics, science, and engineer-
ing. [4] It also enables creative expression when used, for 
instance, in conjunction with voltage-controlled audio 
synthesizers.

You are invited to join the quest to bring analog computing 
back. THE ANALOG THING (or simply THAT) is here to get 
you started. THAT is a high-quality, low-cost, open-source, 

1. WELCOME

2. REQUIREMENTS

3. WHAT IS IN THE BOX?

 ● suitable cables and adapters to connect THAT to the 
output display setup used (not included)

 ● a set of 2 mm banana plug patch cables (included)

To get started with THAT, the following items are required: 
 ● a system to display the output of THAT (time-varying 

voltages). See Section 6 of this guide for options.
 ● a USB power supply such as a phone charger with a 

USB-C plug (not included)

THAT ships in a box that contains:
 ● 1 power cord: USB-A to USB-C
 ● 1 stereo RCA-to-RCA cable
 ● 1 set (30 pcs.) 2 mm banana plug patch cables
 ● 1 master-to-minion ribbon cable
 ● The First Steps booklet

The box does not include:
 ● an oscilloscope or other visual display system
 ● a USB power supply (many people have spare ones)
 ● BNC adapters/cables to connect THAT to an oscilloscope

For a more comprehensive details and documentation of THAT, please check https://the-analog-thing.org/docs.
For accessories, please check the THAT shop at https://shop.anabrid.com.
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4. WHAT IS ANALOG COMPUTING?

Analog computing is one of the three computational paradigms: analog, digital, and quantum computing. Each of these 
paradigms	 has	 its	 own	 strengths	 and	 weaknesses,	 and	 they	 differ	 in	 both	 their	 development	 and	 prevalence.	 Digital	
computing is ubiquitous today, while quantum computing is in its infancy. Analog computing is tried and tested, yet has 
fallen	out	of	fashion	and	is	largely	unknown	today.	THAT	is	here	to	change	this	because	analog	computing	offers	exceptional	
power	efficiency	and	performance,	both	of	which	are	much	needed	as	the	limits	of	Moore’s	Law	are	approaching.	

Generally speaking, analog computing is about modeling dynamic systems, i.e., systems that change over time according 
to known relationships. Examples include market economies, the spread and control of diseases, population dynamics, 
nutrient absorption, nuclear chain reactions, and mechanical systems. Models of dynamic systems are useful similarly to 
how architectural models are useful in building design and crash test dummies are useful in car safety engineering. They 
offer	insights	into	matters	that	would	be	too	difficult,	laborious,	expensive,	or	harmful	to	study	directly.	Analog	computing	
can serve a variety of purposes. It may help understand what is (models of), or it may help bring about what should be 
(models for). It may be used to explain in educational settings, to imitate in gaming, to predict in the natural sciences, and 
to control in engineering – or it may be pursued for the pure joy of it. Analog computing is also a great way to learn about 
calculus, science, and engineering.

Analog computers are modular and analog computer “programming” is a process of translating the behavior of a given 
system into patched connections between computing elements – the modules that make up an analog computer. As 
intermediate	steps,	this	process	requires	that	temporal	behavior	be	described	mathematically	in	the	form	of	differential	
equations and, in turn, that these equations be converted into patch diagrams. While solutions of algebraic equations 
are	single	values,	solutions	of	differential	equations	are	 functions	–	 i.e.,	 relationships	 that	can	be	presented	as	graphs.	
Consequently,	analog	computers	produce	output	in	the	form	of	(typically	two-dimensional)	graphs.	All	differential	equations	
can be modeled with just a few kinds of computing elements: inverters, summers, multipliers, and, crucially, integrators.

Analog computing has one of its major roots in the invention of the mechanical 
“disk-globe-and-cylinder” integrator. Comparable to how interlocked, 
different-sized	gears	multiply	rotation	rates	and	can	thus	be	seen	as	performing	
mathematical multiplication, the disk-globe-and-cylinder integrator can be 
seen as performing mathematical integration by computing the area under a 
curve	in	x/y	space.	The	disk-globe-and-cylinder,	shown	in	the	figure	on	the	left,	
consists of a disk, a sphere (or globe), and a cylinder, each mounted to rotate.

Disk,	sphere,	and	cylinder	are	configured	with	 the	circular	surface	of	 the	
disk touching the sphere and the sphere, in turn, touching the curved surface 
of the cylinder such that rotating either one of the three will, under most 
circumstances, turn the other two. In addition to its ability to rotate, the sphere 
can also be moved linearly back and forth along its rotational axis, which runs 
parallel to the disk’s diameter, without ever losing contact with either disk or 
cylinder. With the disk rotating at a constant rate a to mark the passage of time, 
the input rotation b is made to follow a curve that changes over its horizontal 
time axis, moving the sphere across the diameter of the disk. The resulting 
output rotation c of the cylinder is then the integral of the area under curve b.

By feeding the output rotation of the cylinder c back to drive the input 
rotation b,	 the	 integrator	 can	 be	 used,	 in	 principle,	 to	 solve	 first-order	
differential	equations	and	plot	their	solution	graphs.	Two	integrators	in	series	
with the output of the second integrator fed back to drive the input of the 
first	one	allows	a	second-order	differential	equation	to	be	solved,	and	so	on.	
This working principle of mechanical analog computers can be implemented 
more	efficiently	using	analog	electronics,	specifically	by	patching	operational	
amplifiers	such	that	they	integrate	their	electrical	inputs	over	time	by	charging	
and discharging capacitors.

a

c

b

disk

b

c

a

sphere

cylinder
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5. USING THAT

input output

THAT is an electronic analog computer designed for desktop 
use	 to	solve	 (sets	of)	differential	equations.	With	 its	patch	
panel instead of keyboard, mouse, and monitor, its user in-
terface	differs	noticeably	from	those	of	its	digital	stored-pro-
gram cousins. The patch panel is divided into groups of ana-
log computing elements such as integrators, summers, and 
multipliers. These are listed and explained in Section 7. Each 
computing element on THAT has one or more inputs and an 
output, accessible via jacks on the plug board. Input jacks 
are marked with circles, and output jacks are marked with 
triangles as shown below. See Section 8 for more details on 
the	different	types	of	jacks	on	the	patch	panel.

THAT is patched by connecting computing elements into 
feedback circuits via patch cables – single-wire cables with 
banana plugs on both ends. Note that patch cable plugs 
do not insert completely into THAT’s patch panel as shown 
in the image below. This is explained in more detail on 
page 25. Multiple patch cable plugs may be stacked in order 
to connect multiple cables to the same jack.

The output of each computing element can be fed to one 
or more inputs of other elements. However, an input of a 
computing element may only take a single signal, such as an 
output	of	another	computing	element.	To	solve	differential	
equations, chains of connected computing elements must 
contain at least one closed feedback loop. Feedback around 
one	integrator	allows	first-order	differential	equations	to	be	
solved, feedback around two integrators allows second-or-
der	differential	equations	to	be	solved,	and	so	on.

THAT represents quantities as time-varying voltages in a 
range	with	fixed	boundaries.	This	range,	called	the	machine 

unit, is thought of as –1 to +1. The actual voltage range THAT 
uses is –10 V to +10 V. Translating patterns of change in 
dynamic	systems	into	differential	equations	and	further	into	
analog computer patches commonly involves the scaling of 
speed and quantities.

Scaling speed allows users to compress or stretch the 
independent variable time, typically by several orders of 
magnitude,	 to	 fit	 patch	 runtimes	 into	 convenient	 time	
frames for observation and measurement. In this way, the 
rapid decay of a volatile compound can be simulated slowly 
enough for observation and interactive manipulation, while 
population dynamics occurring over decades or centuries 
can be simulated in the blink of an eye. Scaling quantities 
is about multiplying all values occurring in a given patch 
uniformly, such that the greatest value occurring in the 
patch	 fits	 into	 and	 makes	 good	 use	 of	 the	 machine	 unit	
interval. A model of the global human population size, for 
example, representing millions of individuals, would not 
involve	millions	of	volts	but	be	scaled	to	fit	within	–1	to	+1	
(i.e., –10 V to +10V).

THAT	 outputs	 solutions	 of	 differential	 equations	 in	 the	
form of time-varying voltages. These can be captured by an 
attached digital computer for further processing, or they can 
be studied visually and interactively using an oscilloscope or 
a similar display system. Just as single-board digital com-
puters allow “headless” operation without a monitor, THAT 
can operate without a visual display. Often, however, and 
especially	when	taking	first	steps	with	THAT,	using	a	visual	
display system is advisable. Section 6 shows several options.

Once THAT is connected to a power supply and a display 
system, it is ready to be patched. This typically begins with 
an understanding of the quantitative relationships that are 
present in some dynamic system, expressed in the form 
of	 one	 or	 more	 differential	 equations.	 This	 then	 guides	
the development of a patching diagram that can then be 
implemented on THAT’s patch panel. Quantities enter the 
patch	via	coefficient	potentiometers.	These	can	be	set	at	the	
beginning of the patching process by connecting the input 
of each potentiometer used to +1, setting the mode selector 
to	COEFF,	selecting	the	potentiometer	using	the	coefficient	
selector knob, monitoring its output on the panel meter, 
and turning the potentiometer knob until the desired value 
is shown.

Setting THAT to OP, REP, or REPF mode will then start the 
patch	to	compute	the	unknown	solution(s)	of	the	differential	
equation(s) and output them as time-varying voltages that 
correspond to the temporal change in the modeled dynamic 
system. The most immediate way to read these solutions 
and manipulate them interactively is to visualize them live 
on an oscilloscope or a similar setup.
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6. VISUAL DISPLAY SYSTEM SETUP

6.1 OSCILLOSCOPE

Patches running on THAT produce output in the form of 
time-varying voltages at various places on the patch panel. 
The most immediate way to read these solutions and ma-
nipulate them interactively is to visualize them on an oscil-
loscope or a similar visual display system. Up to four values 
can be selected and connected to a visual display system.

This section describes several ways to set up THAT with 
a visual display system. These vary considerably in terms of 

capabilities	and	affordability.	Ideally,	visual	display	systems	
used with THAT should be capable of visualizing multiple 
(two or ideally four) channels, frequencies of 200 kHz, and 
support	x/y	display	mode.	Less	capable	but	more	affordable	
systems such as software oscilloscopes with a single 
channel	and	a	20	kHz	 frequency	 limit	offer	 less	 than	 ideal	
yet satisfactory performance for the applications covered in 
this guide.

THAT can be used with various kinds of oscilloscopes, such 
as conventional cathode ray tube oscilloscopes, digital 
oscilloscopes, and USB oscilloscopes in conjunction with 
PCs. Connect one or more of the outputs X, Y, Z, and U on 
the back of THAT directly to the inputs of the oscilloscope. 
Use suitable cables such as the included RCA-to-RCA cable 

in combination with RCA-to-BNC adapters (not included). 
Up to four channels can be connected if supported by the 
oscilloscope. Refer to your oscilloscope manual for setting 
the	display	mode,	channel	sensitivity,	and	 time	deflection.	
Connect the USB-C IN on the back of THAT to a USB power 
supply using a USB-C cable. 

Using a desktop oscilloscope Using a PC with an external USB oscilloscope
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6.2 PC WITH AUDIO INPUT INTERFACE

Using a PC with an external USB audio interface Using a PC with a soundcard

THAT can be used in conjunction with software oscilloscopes 
running on PCs and taking input via audio input interfaces, 
such as external USB audio interfaces and standard sound 
cards. Connect one or two of the outputs X, Y, Z, and U on 
the back of THAT to the RCA audio inputs of the audio in-
terface using suitable cables and adapters. The RCA-to-RCA 
cable included with THAT is suitable for connections to USB 
audio interfaces with RCA jacks. Soundcards with a 3.5 mm 
jack require cables or adapters that are not included with 
THAT. The number of audio input channels available (typi-
cally two: one left and one right) determines the number of 
values that can be monitored. Install an oscilloscope soft-
ware application on the digital computer and select the au-
dio input interface as its input device. Connect the USB-C IN 
on the back of THAT to a USB power supply using a USB-C 
cable.

Audio input interfaces contain capacitors that 
alter	 signal	waveforms	by	filtering	out	DC	and	
low	frequency	components.	Note	the	difference	
between the original waveform and the 
waveform measured using a sound card and 
software oscilloscope shown here:

As qualitative demonstrations, the applications 
discussed	in	this	guide	are	not	seriously	affected	
by this.

original: measured:



12

1. USB-C Power In 2. MINION IN Port 3. RCA Out 5. HYBRID Port 6. MASTER OUT Port4. RCA Trigger Out

22. Summers

19. Machine Units

18. Capacitors

17. Coefficient Potentiometers 16. Coefficient Selector 15. OP-Time Potentiometer

14. Mode Selector

12. Panel Meter

13. State LEDs

11. Output Jacks

10. Diodes

9. Resistor Networks

20. Multipliers

23. Coefficients
7. Integrators

8. Inverters

21. Comparators

1
1
1
10
10

IC

1
1
1

10
10

1

10

7. FEATURES OF THAT
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1. USB-C Power In. Power input jack (the USB data pins are not 
used). Use a USB power supply unit such as a phone charger or any 
other USB outlet with a USB-C cable.

2. MINION IN Port. When applications require more computing 
elements than are available on a single THAT, multiple THATs can 
be linked in a “minion chain” using their “MASTER OUT” and “MIN-
ION IN” ports. Connecting the MASTER OUT port of a THAT to the 
MINION IN port of another THAT with the included ribbon cable 
makes	the	first	THAT	the	“master”	and	the	second	THAT	its	“min-
ion.” There is no limit to the number of THATs that can be linked in 
a minion chain.

3. RCA Out. The four RCA jacks labeled X, Y, Z, and U provide the 
signals	plugged	to	the	x,	y,	z,	and	u	jacks	on	the	patch	field,	attenu-
ated to a ±1 V range, which is compatible with audio hardware such 
as sound cards, allowing software oscilloscopes to be used.

4. RCA Trigger Out provides a trigger signal for oscilloscopes when 
THAT is used in REP (repeat) or REPF (repeat fast) mode.

6. MASTER OUT Port. See 2. MINION IN Port.

5. HYBRID Port allows THAT to be controlled from digital devices, 
enabling the development of analog-digital hybrid programs. Out-
puts on the HYBRID Port are attenuated and shifted to 0 V to 3.3 V 
to facilitate analog/digital conversion. 

7. Integrators integrate the sum of their (weighted) input values 
over	time.	Each	integrator	has	five	inputs	(two	of	which	are	weight-
ed by factor 10) and one output via two output jacks. The IC (initial 
condition) input allows the start value of an integration to be set. 
Integrators change the sign of their output values implicitly.

8. Inverters yield the input value with the opposite sign.

9. Resistor Networks can be used to add inputs to an integrator, 
summer, or inverter by connecting the SJ jack of a resistor network 
with the SJ jack of the computing element.

10. Diodes and 10 V Zener Diodes support various applications.

11. Output Jacks. Patch cable connections from any output on the 
patch panel into these jacks make those outputs available at the 
RCA Out ports as well as via the HYBRID port at the back of THAT, 
shifted to a narrower voltage range (see 3. RCA Out above).

12. Panel Meter displays values or operation times, depending on 
the Mode Selector position. In COEFF mode, the output value of the 
coefficient	potentiometer	selected	using	the	Coefficient	Selector	is	
shown in the unit range 0 to 1. In the MINION, IC, OP, or HALT 
modes, the value patched into the U OUTPUT jack is shown in the 
unit range –1 to 1. In REP mode, the OP TIME is shown in the 0 to 
10 sec range. In REPF mode, the OP TIME is shown in the 0 to 100 
ms range.

13. State LEDs display device states: OP=patch running, IC=initial 
condition mode, OL=overload.

14. Mode Selector controls the operational mode of THAT: In CO-
EFF	mode,	the	value	of	the	coefficient	selected	using	the	COEFFI-
CIENT selector is displayed on the Panel Meter. In IC mode, the 
outputs of the integrators are set to the values applied to their re-
spective IC (initial condition) inputs (with the opposite sign) to set 
the stage for a patch run. In OP (operate) mode, the current patch 
is run. In HALT mode, integration is suspended and outputs are 
held at their last values. In REP (repeat) mode, THAT repeatedly 
follows	a	process	of	briefly	entering	IC	mode,	then	OP	mode.	This	
allows steady graphs to be displayed on an oscilloscope. REPF: As 
REP mode, but 100 times faster. In MINION mode, THAT is con-
trolled by another THAT that operates as the MASTER.

15. OP-Time Potentiometer sets time spent in OP mode between 
0 and 10 seconds in REP (repeat) mode and between 0 to 100 milli-
seconds in REPF (repeat fast) mode.

16. Coefficient Selector	selects	the	coefficient	potentiometer	val-
ue displayed on Panel Meter in COEFF mode.

17. Coefficient Potentiometers are used to change the values of 
coefficients	(see	23.	Coefficients).

18. Capacitors support various applications.

19. Machine Units provide –1 and +1 unit values.

20. Multipliers multiply values supplied to their inputs. 

22. Summers add up values supplied to their inputs. Each summer 
has seven inputs (three of which are weighted by factor 10) and 
one output via two output jacks. Summers invert the sign of their 
output values implicitly.

23. Coefficients.	Input	and	output	jacks	of	the	Coefficient	Poten-
tiometers.

21. Comparators allow conditional switching. If A+B>0, then the 
input to > is available at the two output jacks, otherwise the input 
to < is available at the two output jacks.
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8. TYPES OF PLUG BOARD JACKS AND THEIR USES
This	 section	 describes	 the	 different	 jacks	
on the plug board of THAT. As already 
mentioned in Section 5, input jacks are 
marked with circles, and output jacks are 
marked with triangles.

Jacks marked with diamond shapes 
split horizontally into a white and a black 
half provide machine unit values. The 
unit	value	−1	is	provided	via	jacks	marked	
with diamond shapes whose lower halves 
are black. The unit value 1 is provided via 
jacks marked with diamond shapes whose 
upper halves are black. These jacks are 
available in the machine unit section of the 
plug board (see Item 19 in Section 7 above) 
and grouped with the integrators.

The integrators, summers, and resistor 
networks (XIR) have inputs marked with 
white circles and the number 1 and inputs 
marked with black circles and the number 
10. The numbers indicate weightings, i.e., 
factors by which input signals are multi-
plied. Signals plugged to inputs marked 
with white circles and the number 1 
remain unchanged. Signals plugged into 
inputs marked with black circles, and the 
number 10 are multiplied by factor ten. 
For	example,	a	signal	with	the	value	−0.02	
plugged into an input marked with a black 
circle, and the number 10 will be converted 
internally	to	the	value	−0.2.

Each integrator has a jack marked with 
a white diamond shape and the label IC. 
This jack is used to set the initial condition 
(IC) of the respective integrator, i.e., that 
integrator’s	 (inverted	 −	 see	 Item	 7	 in	
Section 7) output value at the beginning of 
a patch run.

Each integrator has a jack labeled 
SLOW. Connecting an integrator’s output 
to its SLOW jack, as shown in the patch 
diagram on the left here, reduces the 
integrator’s operating speed to 0.01 of its 
regular speed. Without this connection, i.e., 
at the normal operating speed, an input of 
−1	 and	 a	 run	 beginning	 at	 IC=0	 leads	 to	
the (inverted) output of +1 in 1 ms. With 
this connection, i.e., in the slow operation 
mode,	the	input	of	−1	and	a	run	beginning	
at IC=0 lead to the output of +1 in 100 ms.

Each integrator, summer, inverter, and 
resistor network (XIR) has a jack labeled 
SJ, which is the abbreviation for Summing 
Junction. The following two circuit diagrams 
show the summing junctions between a 
resistor network that sums the inputs to an 
operational	amplifier	(the	core	component	
of  integrators, summers, and inverters) as 
well as in a stand-alone resistor network 
(XIR):

The SJ jacks on integrators, summers, 
and inverters allow adding further inputs 
to these elements by connecting the 
summing junction of a given element to the 
summing junction of a resistor network. 
The patch diagram on the right here shows 
the addition of inputs to a summer by way 
of connecting a resistor network (XIR) via 
their summing junction jacks.

Each of the summers has a jack marked 
with a white diamond shape and the label 
FB (feedback), as well as a jack marked 
with the ground symbol (�), which gives 
access to THAT’s ground. In combination, 
these two jacks can be used to disable a 
given summer’s feedback resistor, turning 
it	 in	 effect	 to	 an	 open	 amplifier.	 For	 this	
purpose, the FB Jack needs to be connected 
to the ground (�) jack, as shown in the 
patch diagram here on the right. Open 
amplifiers	are	typically	used	to	implement	
inverse functions. Combinationed with a 
multiplier,	 for	example,	an	open	amplifier	
can implement a division or a square root.
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9. APPLICATIONS

9.1 RADIOACTIVE DECAY

This	section	presents	six	analog	computer	applications	from	several	fields,	exemplifying	typical	modeling	workflows	from	
the	translation	of	differential	equations	into	patch	diagrams	to	patch	panel	connections	and	parametric	exploration.

A minimal analog computer patch consists of an integrator whose output is fed back 
as its input. Imagine rotation c in the image in Section 4 being fed back to drive rota-
tion b. Depending on the rotational direction of this feedback, c plotted over a results 
in	an	either	exponentially	growing	or	exponentially	decaying	curve	and	thus	offers	a	
model for phenomena with exponential dynamics. Let’s give this a try electronically 
by setting up an analog computer patch to model the decay in a radioactive sample. 
Exponential	decay	can	be	described	with	the	first-order	differential	equation	shown	
here.

In this equation, λ	denotes	the	decay	coefficient.	Note	that	N in Newton’s notation is 
the equivalent of dN/dt in Leibniz’s notation. To translate this equation into a patching 
diagram,	the	Kelvin	feedback	technique	can	be	used.	As	a	first	step,	this	technique	
typically requires arranging the equation(s) such that the highest derivative is isolated 
on the left side of the equal sign. Showing N isolated on is left, the equation above 
is already arranged in this way. Establishing the feedback loop required to solve the 
equation can now take advantage of the equality of both sides of the equation. For 
this purpose, the highest derivative on the left of the equal sign is, for the time being, 
assumed to be known. The term on the right of the equal sign –Nλ is then modeled 
with a suitable chain of computing elements. In the radioactive decay example, this 
is simply an integrator connected to a potentiometer that implements the decay 
coefficient.	The	output	of	this	chain	of	computing	elements,	known	to	be	equal	to	
the	highest	derivative,	is	then	connected	to	the	input	of	the	first	computing	element	
in the chain, closing the feedback loop. In the radioactive decay example, a second 
potentiometer is needed to set the size of the sample at the start of the patch run 
(i.e., the initial condition of the integrator).

As integrators change the signs of their output, feeding an integrator’s output back 
to	its	input	is	sufficient	to	model	decay	(i.e.,	negative	exponential	growth).	To	display	
diminishing positive values, however, the initial value of the integrator’s output must 
be negative, and the sign of the output must be changed using an inverter. Two 
coefficient	potentiometers	allow	the	 initial	number	of	molecules	N0 and the decay 
coefficient	λ to be adjusted.

To run this patch, put THAT in COEFF mode. Plug cable connections on the patch 
panel	as	shown	in	the	patch	diagram.	Use	the	coefficient	selector	to	select	coefficient	
potentiometers 1 and 2 in turn and set both to 0.5. Connect your display system 
to RCA Out X on the back of THAT. Run the patch in REP (repeat) mode to display a 
flicker-free	image	on	the	display	system.	As	the	patch	runs,	change	coefficients	1	and	
2 and observe how the graph changes. Also, adjust the OP-Time and run the patch in 
REPF	mode	to	observe	how	these	changes	affect	the	output.

.

.

differential equation
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Output: displacement of an underdamped suspension
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9.2 MASS-SPRING-DAMPER SYSTEM
Vehicle suspensions absorb bumps in the road to provide comfortable and safe 
rides. A typical suspension system includes a spring and a damper, which support 
the mass of the vehicle, its passengers, and cargo. By selecting the ideal spring and 
damper settings for a given mass and impact force, suspensions systems are tuned 
to a “sweet spot” called critical damping. In this condition, the suspension absorbs 

as much impact energy as possible 
and returns to equilibrium without 
overshooting and oscillating. Testing 
suspension characteristics for varying 
masses and impact forces tends 
to	 be	 infeasible	 in	 the	 field,	 which	
makes analog computer modeling an 
excellent	 alternative.	As	a	first	 step,	
this requires a description of the sys-
tem of interest in the form of one or 
more	differential	equations	arranged	
such that the highest derivative is iso-
lated on the left of each equation. To 
describe a suspension system in this 
way, we start by noting that the sum 
of the forces exerted by mass, spring, 
and damper is zero at all times:

According to Newton’s second law of motion, Fm is mass m times acceleration a. The 
force with which the damper resists movement FD	is	a	damping	coefficient	D times 
the speed v of its vertical displacement. The force exerted by the spring Fs is a spring 
coefficient	s times its vertical displacement y. The speed v	is	the	first	derivative	of	ver-
tical displacement over time, which we denote by y, and the acceleration a is the sec-
ond derivative of vertical displacement over time, which we denote by y. This yields 
my + Dy + sy = 0 or, resolved for the highest derivative y:

. ....
..

.

Developing	a	patching	diagram	from	this	second-order	differential	equation	 takes	
advantage of the equality of both sides of the equal sign. Assuming that y is known, 
we model the term on the right of the equal sign using two integrators and feed the 
resulting	lower	derivatives,	with	coefficients	applied	and	summed,	back	to	the	input	
of	the	first	integrator,	as	shown	in	the	diagram	on	the	top	right.

Run	the	patch	in	REPF	(repeat	fast)	mode	at	80	ms	OP-Time	to	view	a	flicker-free	
image	on	the	display	system.	As	the	patch	runs,	change	the	settings	of	coefficient	
potentiometers 1 through 4 and observe the suspension dynamics change. This 
patch also applies to damped oscillators in scenarios other than vehicle suspension 
tuning, for example in earthquake safety engineering and electronic circuit design.

..
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Output: spacecraft altitude and vertical velocity

v(t) =  ∫ (g – T) dt
h(t) = ∫ v dt + h(0) 
F(t) = F(0) – ∫ αT dt

9.3 LUNAR LANDING
“Houston, Tranquility Base here. The Eagle has landed.” Neil Armstrong radioed to 
Houston Mission Control after landing the Apollo 11 Lunar Module on the surface 
of the Moon on July 20, 1969. Spacecraft Communicator Charles Duke replied from 
Houston, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys 
about to turn blue. We’re breathing again. Thanks a lot!” Commander Neil Armstrong 
flew	the	 lunar	 landing	approach	 in	 tight	 interaction	with	pilot	Buzz	Aldrin	and	the	
Lunar Module Guidance Computer. Descending from a lunar orbit, the lander moved 
on an initially near-horizontal but soon increasingly steep downward trajectory. As 
lunar surface features came into view ever more clearly from lower and lower alti-
tudes, Armstrong repeatedly used a joystick to redesignate the targeted landing site, 
aiming for terrain features suitable for a safe landing.

Meanwhile, the computer ensured a steady descent rate, which Armstrong could 
adjust using an (increase)-neutral-(decrease) toggle switch. Controlling the rate of 
descent in this way, Armstrong was able to trade fuel for time during which safer 
landing sites could be spotted and reached. In doing so, he had to use the fuel con-
servatively,	 to	ensure	a	safe	 touchdown.	After	Armstrong	decided	 to	fly	beyond	a	
boulder	field,	the	lander	finally	touched	down	with	less	than	5	percent	fuel	left	in	its	
descent stage. To make matters worse, sloshing motions of the fuel inside the tanks 
caused	false,	even	lower	fuel	level	readings,	and	the	computer	threw	up	a	total	of	five	
false	program	alarms	during	the	landing	approach,	turning	the	first	manned	lunar	
landing into one of the most hair-raising maneuvers of NASA’s lunar program.

The analog computer patch shown here simulates the powered descent of a lunar 
lander	during	its	final	approach,	putting	you	in	charge	of	the	descent	engine	throttle.	
A	system	of	three	differential	equations	models	vertical	velocity	v	under	the	influence	
of lunar gravity g, altitude h, and fuel level F remaining from a limited initial supply. 
Coefficient	 potentiometer	 1	 is	 your	 descent	 engine	 throttle.	 Set	 coefficient	
potentiometers 2 through 7 to the values shown in the diagram below. Connect h to 
OUT X, v to OUT Y. Connect F to OUT U to monitor the fuel level on the panel meter. 
Connect your oscilloscope or other display system to RCA Out X and Y on the back of 
THAT. Set the display system to “roll mode.” Run the patch in THAT’s OP mode and 
use	coefficient	potentiometer	1	to	control	your	descent	engine’s	burn	rate	and	thrust.	
Watch your altitude and vertical velocity on the display system and monitor your fuel 
level on the panel meter. Touch down as gently as you can. Good luck and Godspeed!
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Output: neuronal burst pattern
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9.4 NEURONAL BURSTING
Neurons in the central nervous system receive nerve im-
pulses from other “upstream” neurons and, if such inputs 
exceed	 their	 firing	 thresholds,	 give	 off	 nerve	 impulses	 to	
“downstream” neurons. Computationally speaking, the ag-
gregation of incoming nerve impulses (also referred to as 
summation) is a process of integration, albeit within a limit-
ed time window, such that incoming impulses soon expire, 
and only the most recent ones carry weight in the integra-
tion as time passes. A few sporadic impulses are usually 
not	enough	to	exceed	the	firing	threshold.	Instead,	it	takes	
either	multiple	upstream	neurons	 to	fire	 together	at	 least	
near-simultaneously, or a single upstream neuron to send 
multiple impulses in short bursts. James L. Hindmarsh and 
R. Malcolm Rose proposed a model for this neuronal burst-
ing	 in	1984.	 The	model,	 consisting	of	 the	 three	first-order	
differential	 equations	 shown	 below,	 responds	 to	 inputs	

to Iext. The variables x, y, and z correspond to the neuron’s 
(bursting) output potential, the transport of sodium and 
potassium through fast ion channels, and the transport of 
other ions through slow channels, respectively.

To	add	a	10-weighted	input	to	the	first	(red)	integrator,	
a resistor network is connected to its summing junction (SJ) 
jack. To operate the second (blue) integrator more slowly 
than the other two, its output is patched to its SLOW jack. 
Set	 the	 coefficient	 potentiometers	 to	 the	 values	 shown	 in	
the patching diagram. Connect x (the output of the inverter) 
to OUT X and connect your oscilloscope or other display sys-
tem to RCA Out X on the back of THAT. If more channels are 
available on your visual display system, connect y and -z ac-
cordingly. Run the patch in OP mode and observe the image 
on the display system while connecting and disconnecting 
Iext to and from +1.
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Output: Euler spiral
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9.5 EULER SPIRAL
The	Euler	spiral	is	defined	as	a	curve	whose	curvature	increases	linearly	with	its	length.	With	the	sign	of	its	curvature	follow-
ing the sign of its length, the Euler spiral takes the shape of a double spiral with point-symmetry around the origin. Besides 
its visual appeal, the Euler spiral can be used to design smooth transitions between straight lines and circular arcs in two 
dimensions,	which	has	practical	value	in	several	fields.	An	obvious	and	immediate	application	area	is	graphic	design.	The	
design of typography, in particular, requires numerous smooth transitions between straight and circular line segments. 
Another	application	area	is	road	and	rail	traffic	network	design.	To	appreciate	the	benefits	the	Euler	spiral	offers	in	this	
area, imagine, as an alternative, the immediate tangential connection between straight and circular road segments. This 
would require motorists to change steering radii instantaneously, which is not only 
physically impossible but uncomfortable and dangerous to attempt. For similar rea-
sons, the Euler spiral is used to generate movement paths in high-speed machinery 
and	robotics.	It	has	also	been	found	to	offer	a	good	description	of	the	curvature	of	
rat whiskers.

To display the Euler spiral, a display system capable of visualizing two channels 
in	x/y	mode	is	required.	Set	the	coefficient	potentiometers	1	through	5	to	the	values	
shown in the patching diagram. Connect x (the output of the inverter shown in blue 
in the patching diagram) to OUT X and connect y (the output of the inverter shown 
in green in the patch diagram) to OUT Y. Connect your oscilloscope or other display 
system to RCA Out X and Y on the back of THAT. Set the display system to x/y mode 
and	 run	 the	patch	 in	REPF	 (repeat	 fast)	mode.	Vary	 the	 settings	of	 the	 coefficient	
potentiometers 1 through 5 as well as the OP-Time potentiometer and observe the 
changing image on the display system.
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Output: changing population sizes

9.6 HUNTER PREY POPULATION DYNAMICS
How do the population sizes of hunter and prey species interact? An initial quanti-
tative insight into this question was found in the early 20th century in the trading 
records of the Hudson’s Bay Company, a Canadian-based fur trading business at 
the time. The company recorded the numbers of lynx and snowshoe hare pelts it 
bought from trappers, thereby creating an indicative historical documentation of the 
changing sizes of Canadian lynx and snowshoe hare populations. These records – the 
1845 to 1935 data is shown in on the right – reveal a curious pattern of periodic and 
temporally related increases and decreases in both population sizes.

As the lynx prey almost exclusively on the snowshoe hare, it was unsurprising 
to	see	 the	size	of	 the	hare	population	affected	by	 the	size	of	 the	 lynx	population.	
It seemed puzzling, however, that the size of the lynx population also seemed to 
be	affected	by	 the	size	of	 the	hare	population,	 leading	some	 to	ask:	 “Do	hare	eat	
lynx?” An explanation for these predator-prey population dynamics was proposed 
independently by Alfred J. Lotka in 1925 and Vito Volterra in 1926 in the form of the 
following	two	first-order	differential	equations:

Variable h refers to the size of the hare population, while variable α refers to the 
growth rate of the hare population (based on their consumption of plant life, which is 
assumed to be abundantly available in the environment). Variable l refers to the size 
of the lynx population, and variable δ refers to the growth rate of the lynx population 
(based on their consumption of the changing hare population). The natural death 
rate of lynx is denoted by variable γ, and the rate at which hare are killed by lynx is 
denoted by variable β. As it turns out, hare do, of course, not eat lynx, but an exces-
sively large lynx population will overhunt the hare population, thereby depleting the 
lynx’s food source, which, in turn leads to a decimation of the lynx population. 

To display the changing population sizes 
of both the predator and the prey species 
simultaneously, a visual display system ca-
pable of visualizing at least two channels is 
required.	Set	the	coefficient	potentiometers	
1 through 6 to the values shown in the patch 
diagram on the right. Set THAT to OP mode 
and your visual display system to "roll mode.” 
To explore the dynamics of both interacting 
populations further, change the settings 
of	 coefficient	 potentiometers	 1	 through	 6	
interactively as the patch runs. If possible, 
also try visualizing the output in x/y mode on 
your display system. The result is a so-called 
phase-space plot for the modeled predator 
prey relationship. This patch can be used 
to model competitive relationships beyond 
ecological systems, for example in economic 
systems and communicable diseases.
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Output in the x/y plane: top view 

Data plots of Lorenz’s two program runs 
with near-identical initial coefficients

21

Output in the z/x plane: front view 

Output in the z/y plane: side view 

Until the mid-20th century, it was generally thought that the accuracy of model-based 
predictions depended entirely on the quality of the models used and the accuracy 
of their input data. Consequently, feeding roughly accurate input into a good model 
was assumed to yield roughly accurate output. This assumption was challenged in 
1961 when Edward Norton Lorenz tested a weather model described by a set of 
coupled	differential	equations.
 Having run the model (on a digital computer) and reviewed an output plot, 
Lorenz decided to produce a more extended plot by running it again with the same 
input	data	for	a	longer	duration.	He	restarted	the	model	and	went	for	a	cup	of	coffee.	
Upon	his	return,	Lorenz	found	a	surprise:	Initially,	the	new	plot	resembled	the	first	
plot	closely,	but	it	soon	deviated	and	took	on	a	distinctly	different	shape,	as	shown	
on	the	top	right	of	this	page.	The	first	program	run	read	an	input	value	of	0.506127	
from the computer’s memory. Lorenz entered this value manually for the second run, 

reading	it	from	the	first	plot,	which	showed	it	
rounded to three places: 0.506. This deviation 
of less than of one part in a thousand caused 
the	two	plots	to	soon	take	on	rather	different	
shapes.	 Instead	of	attributing	the	difference	
between the two plots to a glitch, and despite 
his weather model being rather simplistic, 
Lorenz realized that the dissimilar plots ex-
emplified	why	 it	 is	so	difficult	 to	predict	 the	
weather and complex dynamic systems in 
general.	 In	such	systems,	 tiny	differences	 in	
earlier states can lead to vast changes in later 
states:	the	butterfly	effect!
 Lorenz’s model is one of many chaotic 
(or “strange”) attractors that have since 
been found. You can implement it on THAT, 
as shown in the diagrams on this page. To 
visualize the characteristic three-dimensional 
pattern of the Lorenz Attractor, switch your 
display system to x/y mode and visualize any 
two of the values x, y, and z marked below.

–z = – ∫1.5xy – 0.2667z dt
s = – (1 – 2.68z)
r = – xs

–y = – ∫1.536r – 0.1y dt

–x = – ∫1.8y – x dt + C 

9.7 LORENZ ATTRACTOR
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As an archetypal theme in computational physics simulation, game and demo 
development, and programming education, bouncing balls occupy a special place 
in the history and culture of computing. Here, we simulate the motion path of a 
bouncing ball dropping in a two-dimensional “box” with machine unit width and 
height, taking into account gravity and drag due to air resistance.

Assuming the horizontal x and the vertical y components of the ball’s movig po-
sition to be independent from one another, these can be computed by two seperate 
circuits. The circuit computing the x-component of the ball’s position (shown on the 
left below) changes the ball’s horizontal direction each time the ball hits either the left 
or the right wall of the box. Its horizontal position is obtained by the second (green) 
integrator, which begins on the left of the screen (IC=+1) and integrates over the ball’s 
velocity v,	which,	in	turn,	is	decreased	linearly	over	time	by	the	first	(red)	integrator.

9.8 BOUNCING BALL
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The y-component of the ball’s position is that of a free-falling object bouncing back 
elastically	when	hitting	the	floor.	It	is	computed	by	the	circuit	shown	in	the	diagram	
on	the	right	above	and	can	be	described	with	the	following	differential	equation:

The	term	on	the	left	of	this	equation	describes	the	ball’s	free	fall	under	the	influence	
of gravity g and drag d due to air resistance. The two conditions shown on the right of 
this	equation	are	satisfied	when	the	ball	hits	either	the	floor	or	the	ceiling	of	the	box,	
respectively.	Beginning	its	fall	at	the	ceiling	(IC=−1	at	the	fourth,	red	integrator)	and	
then losing energy due to drag, the ball will not reach the ceiling again, such that the 
lower	condition	on	the	right	of	the	formula	will	never	be	satisfied.	The	upper	condi-
tion,	however,	will	be	satisfied	repeatedly	each	time	the	ball	hits	the	floor.	The	Zener	
diode becomes conductive at that instant and momentarily adds upwards velocity 
to the third (green) integrator. Connect the TRIG output of THAT with the external 
trigger input of your oscilloscope (if available) and run the analog computer in REPF 
(repeat fast) mode.

y = –g + dy
.. . –c(y – 1) if y > 1

+c(–y – 1) if y < 1
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Output: basic term for x

Output: basic term for x2

Output: basic term for x3

Polynomials are a family of functions that are sums of power functions. Their graphs 
are	 smooth,	 differentiable	 curves	 without	 discontinuities	 such	 as	 gaps,	 or	 sharp	
turns. A polynomial whose highest power is three is called a cubic polynomial. Its 
general form is:

Choosing	 suitable	 degrees	 of	 polynomials	 and	 manipulating	 their	 coefficients	 (a, 
b, c, and d in the above example) allows approximating a wide variety of smooth 
graphs	within	certain	value	ranges.	This	process	is	useful	in	numerous	scientific	and	
engineering contexts and beyond. For example, it allows modeling smooth motion 
paths in robotics, interpolating sampled or otherwise incomplete data, reconstituting 
noisy signals, and synthesizing various timbres of sound.

Polynomial functions can relate to analog computing in two basic ways. They can 
be used to feed varying inputs into analog computer programs, or, as solutions of 
differential	equations	solved	using	analog	computers,	they	can	be	outputs	of	analog	
computer programs. Here, we focus on the second scenario and program a polynomial 
generator	–	a	utility	for	the	flexible	modeling	of	arbitrary	cubic	polynomials,	with	the	
values of a, b, c, d as well as the polynomial being restricted to the machine unit 
interval	−1	to	+1.

The	 wiring	 of	 the	 coefficient	 potentiometers	 2	 through	 5	 corresponds	 to	 the	
helper function described in Section 10.4, allowing to set the values of a, b, c, and d 
within	the	entire	machine	unit	range	of	−1	to	+1.	Connect	the	TRIG	output	of	THAT	
with the external trigger input of your oscilloscope (if available) and run the analog 
computer in REPF (repeat fast) mode.

9.9 POLYNOMIAL GENERATOR
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This	section	presents	five	helper	functions	that	allow	shaping	values	in	various	analog	computer	applications.	Besides	their	
utility	in	larger	applications,	these	helper	functions	also	make	for	good	beginner’s	exercises	−	each	standing	alone	or	in	
various	combinations.	The	five	circuit	diagrams	shown	here	correspond	to	the	setups	in	the	two	patch	diagrams	using	the	
same cable colors.

This function takes two input values A and B and gives as its 
output whichever of the two input values is greater.

out = max(A, B)

This function also takes two input values A and B. As its out-
put, it gives whichever of the two input values is smaller.

out = min(A, B)

This function takes one input value A and gives as its output 
the absolute value of A. In other words, it gives A when A 
is positive, the positive value of A when A is negative and 0 
when A is 0.

out = abs(A)

While	 the	 conection	 of	 a	 coefficient	 potentiometer	 to	 the	
machine units supply gives an adjustable value in a range of 
either	−1	to	0	or	0	to	+1,	this	function	offers	an	adjustable	
value	within	the	entire	machine	unit	range	of	−1	to	+1.

out = –1...+1

This function takes one input value A and gives as its output 
A when A is greater than 0. Otherwise, it gives 0.

out = A if A>0
out = 0 if A≤0

10. HELPER FUNCTIONS

10.1 MAXIMUM OF TWO VALUES

10.2 MINIMUM OF TWO VALUES

10.3 ABSOLUTE VALUE

10.4 ADJUSTABLE VALUE -1 to +1

10.5 NON-NEGATIVE VALUES ONLY
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THAT is switched on, but the display is blank. Why?
This can happen when one or more patch connections 
create short circuits. Ensure that none of the outputs of 
computing elements are connected to ground or each other 
and that the +1 signal is not connected to ground (�).

If THAT is powered by USB, i.e., by 5 V−, then how is it 
possible that its machine unit is physically ±10 V?
Powered via a USB-C socket, THAT is indeed supplied with 
5	V−	in	the	first	instance.	The	relatively	bulky,	cuboid-shaped	
component near to the USB-C socket on the upper left of 
THAT’s	base	PCB,	is	a	DC/DC	converter,	which	turns	a	4.5	V−	
to	5.5	V−	input	into	a	±12	V	output.	This	output	powers	all	
the main functions of THAT, allowing its ±10 V machine unit.

With outputs varying between −10 V to 10 V, how can 
THAT model smaller or greater quantities?
Translating patterns of change in dynamic systems into 
mathematical representations and further into analog 
computer programs commonly involves the scaling of 
quantities. Quantities are represented on analog computers 
in	a	voltage	or	current	interval	with	fixed	boundaries	called	
the	machine	unit.	On	THAT,	this	interval	is	−10	V	to	+10	V.	For	
the sake of simplicity, the machine unit is generally thought 
of as ± 1, regardless of the actual voltage or current inter-
val of a given analog computer. To model arbitrary quan-
tities	on	THAT,	they	can	be	scaled	to	make	efficient	use	of	
the machine unit. Output can then be converted back to the 
original scale.

How can I use THAT to create useful models of very fast 
or very slow phenomena?
Translating patterns of change in dynamic systems into 
mathematical representations and further into analog 
computer programs commonly involves the scaling of speed. 
THAT allows compressing or stretching the independent 
variable time by several orders of magnitude. In this way, 
the rapid decay of a volatile compound can be simulated 
slowly enough for observation and interactive manipula-
tion, while population dynamics occurring over decades or 
centuries can be simulated in the blink of an eye.

Is THAT a general-purpose computer?
Yes and no. The term general-purpose computer is commonly 
used to describe digital stored-program computers that can 
execute arbitrary algorithms. While THAT does not belong 
in this category, it is a general-purpose analog computer in 
that	it	can	solve	any	(set	of)	differential	equation(s)	within	the	
means of its computing elements. By connecting multiple 
THATs in master/minion chains, it is possible to implement 
arbitrarily large analog computer patches involving any 
number of computing elements.

Why do the plugs not go fully into the patch panel?
The 2 mm plug cables were originally designed to plug 
entirely into a corresponding type of gold-plated socket. 
One of these sockets plus mounting costs about USD 1.00, 
which	would	add	up	significantly	for	the	186	plug	positions	
on THAT’s patch panel. We saved most of this cost by using 
an extra-thick top circuit board with appropriately-sized, 
gold-plated through-holes. Since the length of the plugs is 
greater than the thickness of the circuit board, we placed 
stop-limits	below	 the	patch	field	 to	ensure	 that	 the	 small,	
contact-assuring springs halfway along the length of each 
plug make reliable contact.

How precise is THAT compared to a digital computer?
THAT is precise to about two positions after the decimal 
point, relative to its machine unit (±1). Comparing the pre-
cision of analog and digital computers is a bit like compar-
ing apples and oranges. Analog computers usually handle 
quantities based on measuring only (“What is your body 
height?”). Digital computers, however, also handle quanti-
ties based on counting (“How many siblings do you have?”), 
which requires strict numerical precision. Consider this: A 
bank clerk getting the third decimal place of an interest rate 
wrong	commits	a	severe	error,	while	a	tailor	being	off	by	a	
few micrometers when taking a client’s measurements has 
no such problem. Furthermore, numerical digital comput-
ing involves rounding, and hence rounding errors, which 
can add up quickly in iterative loops. Analog computers do 
not operate numerically and do not round. In this sense, the 
great precision of today’s digital computers helps minimize a 
problem	that	is	specific	primarily	to	digital	computing.	Rep-
resenting quantities as continuous voltages, THAT does not 
suffer	 from	many	 issues	 that	are	 inherent	 to	binary	value	
representations. While analog computer solutions can be af-
fected by noise and instabilities, the precision of THAT is per-
fectly appropriate for most analog computer applications.

11. FREQUENTLY ASKED QUESTIONS 

The integrators run into overload too quickly. Why?
This	can	happen	when	there	are	conductive	fingerprints	or	
dirt on the patch panel. Gently cleaning the panel should 
resolve the issue.



Books

 ● Bernd Ulmann (2023). Analog and Hybrid Computer Pro-
gramming, DeGruyter, Berlin.

 ● Bernd Ulmann (2023). Analog Computing, Oldenbourg 
Wissenschaftsverlag, Munich.

 ● Bruce J. MacLennan (2012). Analog Computation. In: 
Meyers Robert A., ed., Computational Complexity. Theory, 
Techniques and Applications, Springer, New York, pp. 151–
184.

 ● Charles Care (2010). Technology for Modelling. Electrical 
Analogies, Engineering Practice, and the Development of 
Analogue Computing, Springer, London.
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1975, Routledge, London and New York.
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Sometimes, when we are out and about, when there is no THAT at hand, or as a matter of personal preference, it can be 
useful to have a way to think through analog programming projects on paper before implementing them. For this purpose, 
you can download a printable paper template from the THAT website at this URL:
https://the-analog-thing.org/THAT_template.pdf

Online

 ● THE ANALOG THING online documentation:
https://the-analog-thing.org/docs/dirhtml

 ● Thomas Fischer (2021). The Analog Way to Compute:
https://medium.com/@7f15ch3r/b8a2ca4a762d

 ● Charles Platt (2023). The Unbelievable Zombie Comeback 
of Analog Computing, WIRED:
https://www.wired.com/story/unbelievable-zom-
bie-comeback-analog-computing

 ● Veritasium (2022). Future Computers Will Be Radically 
Different	(Analog	Computing):
https://youtu.be/GVsUOuSjvcg

12. USEFUL RESOURCES

13. FURTHER READING

Social Media

 ● THAT on Facebook:
https://www.facebook.com/groups/theanalogthing

 ● Analog Paradigm on Twitter:
https://twitter.com/analogparadigm

 ● anabrid GmbH on LinkedIn:
https://www.linkedin.com/company/anabrid

 ● THAT Open Hardware on GitHub:
https://github.com/anabrid/the-analog-thing

THAT Online

 ● THE ANALOG THING:
https://the-analog-thing.org

 ● Analog Paradigm:
https://analogparadigm.com

 ● anabrid GmbH:
https://www.anabrid.com

 ● THAT Shop:
https://shop.anabrid.com

Various resources are available to make your explorations and use of THAT enjoyable and rewarding. Here are several 
related web and social media references. These will help you stay up-to-date with all things THAT and get in touch with 
other members of the analog computing community.






