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Goal 
Example of a chaotic pendulum by using a single THAT and an oscilloscope in xy operation 
mode. This application shall correspond to a roulette table with 4 steady states and a ball with 
adjustable starting speed and starting position. 

Setup 
The setup is generated for enabling the implementation of the differential equation with a 
single THAT. 

 

The ball is represented by an infinite small 
magnet at the end of a long fiber. The fiber is 
fixed on (0;0;∞); the magnet hovers shortly 
above the xy-plane. 
At the xy-axels infinite small magnets are 
mounted. 
The ball hat 2 initialized conditions: location 
and speed @t=0. 

Equation 
The balanced forces can be described easily, assuming ball and magnets are on z=0: 
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Hint: The symbol · shall represent a standard multiplication only, not a scalar product. 
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Unfortunately we get at x=0 or at y=0: division by zero. Putting the ball to z=h avoids division 
by zero: 

normalized different equation  
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Now it’s easy to be implemented, however one THAT does not offer enough calculation 
components (4 multipliers are required here, 2 are offered by THAT). 
Hint: 
1/x cannot be implemented for x [ ]1; 1∈ − +  in THAT (the denominator has to be >0 always). 

Let’s simplify more just to get it implementable. 

 

The red curve shows an 

example of xß
x

  

The normalized result is 
limited to ±1 (property of a 
THAT component). 
The green curve shows a 
simplified straight forward 
approach “similar” to the 
red curve. 

 

Based on the simplification above, the 3D-
map of the static forces shows the steady 
state operating points clearly: one by 
quadrant. 
It can be expected that the 1/x and the 
approximated behavior are going to 
produce more or less similar results.  

finally normalized different equation  
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This equation is designed for being implemented in THAT: as many components as possible 
shall be used (further simplifications of the equation are possible). 
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Implementation 

 
The block chart has to be implemented twice: for x and for y. 

Hint: I’m a hard core electronics engineer – I prefer an “electronics” block chart. 

 

Colored wiring 
according the 
block chart 
above. 
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Real 
implementation 
in operation: the 
chaotic 
behaviour can 
be seen easily. 
Hint: The 
oscilloscope 
shows the y-axel 
horizontally and 
the x-axel 
vertically. 
Hint: I put 
THAT together 
with a litle 
single channel 
oscilloscope into 
a wooden case. 

Results 

 
 

 

Three examples with various 
adjustments. 
Adjustable parameter: 
initialized conditions -y0 and vx0  
a, ß and γ for the x-axel 
a, ß and γ for the y-axel 
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