Difference between revisions of "Lorenz"
From TheAnalogThing
(Created page with "In 1963 Edward Norton Lorenz (23.05.1917 - 16.04.2008) developed a model for atmospheric convection (see https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_02...") |
|||
Line 1: | Line 1: | ||
In 1963 Edward Norton Lorenz (23.05.1917 - 16.04.2008) developed a model for atmospheric convection (see https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml and https://www.math.uni-hamburg.de/home/lauterbach/scripts/seminar03/prill.pdf for more details). This model, which was simulated on a tiny digital computer (Royal McBee LPG-30), showed an interesting behaviour which gave rise to research on chaotic attractors. | In 1963 Edward Norton Lorenz (23.05.1917 - 16.04.2008) developed a model for atmospheric convection (see https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml and https://www.math.uni-hamburg.de/home/lauterbach/scripts/seminar03/prill.pdf for more details). This model, which was simulated on a tiny digital computer (Royal McBee LPG-30), showed an interesting behaviour which gave rise to research on chaotic attractors. | ||
+ | |||
+ | The system itself is described by three couple differential equations (x' denotes the first derivative of x with respect to time here - more typically it would be written with a dot over the variable name): | ||
+ | |||
+ | x'=σ(y-x)<br> |
Revision as of 10:49, 1 September 2021
In 1963 Edward Norton Lorenz (23.05.1917 - 16.04.2008) developed a model for atmospheric convection (see https://journals.ametsoc.org/view/journals/atsc/20/2/1520-0469_1963_020_0130_dnf_2_0_co_2.xml and https://www.math.uni-hamburg.de/home/lauterbach/scripts/seminar03/prill.pdf for more details). This model, which was simulated on a tiny digital computer (Royal McBee LPG-30), showed an interesting behaviour which gave rise to research on chaotic attractors.
The system itself is described by three couple differential equations (x' denotes the first derivative of x with respect to time here - more typically it would be written with a dot over the variable name):
x'=σ(y-x)